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The majority of devices and units of microelectronics are multilayer structures made 
of materials with differing coefficients of thermal expansion and elastic constants. 
Thermal stresseswhich arise in such systems due to temperature changes when manu- 
factured or in operation may result in a breakdown, or plastic deformation or in a 
change of the physical properties of materials. At the same time, due to adopted 
assumptions the existing design models do not describe the stressed states in real 
systems of finite dimensions. The designs in [1-3] are obtained on the basis of the 
engineering theory of beams, and in [4, 5] the obtained solution was for the infin- 
ite strip in a half-space. In the present article a right circular cylinder of 
radius R was used as a mathematical model which was cut by the plane z = 0 into two 
layers of thickness H or H* (Fig. i). In our considerations the quantities referring 
to the layer 2 are distinguished by an asterisk. The cylinder deformation problem 
due to the temperature lowering from T~ to T= was solved within the framework of 
the linear theory of thermoelasticity. It was assumed that the material of each 
layer is homogeneous and isotropic, that the temperature is independent of the co- 
ordinates, and that the coefficients of thermal expansion a and a* are independent 
of T. Two formulations are analyzed. 

w For any relation between H and H* the difference methods are used to solve the problem 
which consists mathematically of the Duhamel--Neumann equations [6] in spherical coordinates 
and of the boundary conditions expressing the absence of any forces on the body outer sur- 
faces: 

opo (R,  z) :-: 0, oFp ( /L  z) - -  0; ( 1 )  

azz (0, H )  = 0, o~: (p, - -  H * )  = 0; ( 2 )  
* 

-% (R, z) = 0, %,: (R,  z) = 0; (3 )  

�9 ,oz (0, H )  = 0, -c~ (,o, - -  U * )  = 0. ( 4 )  

For p = 0 the axisymmetric conditions are fulfilled. 
fastened onto the plane z = 0 

o~z (0, 0) = ~ (p, 0); 

�9 ~ (0, 0) = ~ (p, 0); 

u(~, 0) = u* (p, 0); 

m (p, 0) = w* (0, 0). 

Moreover, the layers are rigidly 

(5) 

(6) 

(7) 

(8) 

In the above ~ and ri= are normal or tangential stresses, respectively; u and w are the 
projections of the displacement on the axes of p and z, respectively. The state for T, is 
regarded as unstrained. 

The original problem can be reduced to an equivalent variational one in which the poten- 
tial energy W of the system is to be minimized. The boundary conditions for the stresses are 
satisfied exactly when W is minimized. An expression for W in the case of an axisymmetric 
strain was found in [7]. The variational problem ~W = 0 written down in the continuous vari- 
ables u and w is again replaced by the variational problem in the discrete values ui~ and wi.. 
The employed double grid and the approximation of some of the functions and their de~ivative~ 
were taken from [7]. Moreover, one uses the approximation 
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of accuracy 0(h,), where the subscripts • and j denote the horizontal and the vertical grid 
lines (i = I, 2 .... , p; j = l, 2, ..., q); h, is the grid step length in the radius direc- 
tion. The approximate expression W(ul, j, w~ 4) was obtained by summing over all cells. 
The difference equations which approximate th~aoriglnal differential ones were obtained by 
using the conditions for stationarity values: 

(OWlOu).~ = O, (OWlOw)~,j = O. 

In particular, the condition that (aW/aw) i ~ = 0 for a point on the separation boundary be- 
tween the layers (m, j) results in the equation 

h~ (z* --  z) u,.,j + (] --  t) ~* + --a7r + C*tq + Ch=) wm.j + 

~2 xp* -}-, hi (x*um+tj - -  x u m - - t , j )  - -  2 ( ]  - -  ~)i~, t ~ Wmq-i , j  - -  

~ 2 ( ] _ t ) ~ 2  ~p. h, [](i--4v,)q-2v, G, /( t--4v) q-2v ] �9 
'q-~'-~ ~m--t 'J---~ L" t - -2v.  "~ ----2~ v G Urn,i+! -{- 

~ h ( ~ : _ ~  ,,+, ( 2 , - , )  (C*h.-,-Gh.)wm,,+~-r-' ' 
g,h, (]-- 2V*k . "-- )u,~_~ 

q_ .~_ [ ] ( t -  4v , ) -  2 ( 1 -  3 v , ) i  -- 2"7," G* __ ] ( i --4v)--2 (t--3v)i__2v G] u m ' y - t  -~- 

[r , G %  ] _[r ~ h  ] + 2 4 (i--2v,) um+t,y--t ' ~ Um--lj'--I - -  4 (t - 2~)] 

(21--3) (G,h4q_Ch2) w , , , , i _ , = 2 ( i _ l ) ( r _ T 1 ) h ~ [ a * ( i §  6 ( i -  v) a] 
4 t - -  2v .  i - -  2v ' 

where 

= G (t  - -  v ) l ( l  - -  2v);  ~*  = c *  (t  ~ , ) / ( 1  - -  2~,,); 

x = G v / ( t - - 2 v ) ;  x * = G * v , / ( t - - 2 v , ) ;  ( ] - - i )  h l = R .  

In the above G is the shear modulus; v is the Poisson coefficient. From the above equation 
one can also obtain the equations for interior points of the medium i or 2 by means of a 
suitable exchange of constants. 

The pattern thus obtained is a nine-polnt pattern. All unknowns are grouped in lines 
as column-vectors of the type 

i u~,Jl 

iu, l 
~b ~ I w2,d. 

�9 * ' I 

tl p,j I 
II)p,j I 

109 



Since each ~j is related only to nj_~ or to nj+,, therefore the matrix of the coeffi- 

cients at the unknowns assumes the block-tridiagonal form. Thus, in the solution one was 
able to use the iterative method of linear relaxation along the lines [8] with the relaxa- 
tion parameter ~ = 1.8, as in [9]. This algorithm was programmed for the BESM electronic 
computer. In the program one took into account that for H << H* or for H >> H* a consider- 
able discrepancy between the steps h2 and h~ in the direction of the z axis for the media i 
and 2 can result in distorting the boundary conditions. In view of the above, equal steps 
were used at the boundary, the move by step taking place in the medium I, 

The values of the stress components at a point are obtained as weighted average values 
of these components over the area of all cells containing this point. The same approxima- 
tions are used as for finite differences. In particular for the interior points of the medi- 
um i the stresses are evaluated by using the formulas 

2G { ui,j L (1 - -  v) ui'J+l -- ui"i-- "- v w~--I'i-- w i + l ' i  
(~.oPli,j -- I ~ V  V (j __ l ) / h  ' '2hl ' 2h'a 

- ( i  -,-' ,~) ~ ( G  - r , ) } ,  

[ Zti--I, j -  ""i--l,j , Wl,j+l --u'i,]--1 } 
%:[ i , :=G L ~ g  :: 2-f, " 

Similar expressions for the medium 2 can be obtained by a suitable replacement of con- 
stants. The different expressions thus obtained approximate the differential expressions 
in Rooke's law with an accuracy of 0(h2). For the boundary points, the formulas change and 
have an accuracy of 0(h), 

In particular, on the boundary p = R in the medium 1 one has 

2(7 ( U'i,q (tIi,q -- Uf,q--t) 

+ v (w,_, , q -  u,, i-,,q) _ (1 + ~ )~  ( G  - r , ) ) ,  
2h2 

"~p~ =-- 6 ("i-,,q2h~- " i+ '  ' ' )  -i-' 6 (~'~'q-h~wi'q-') 

In evaluating the program a number of tests were carried out for simplified mathematical 
or physical models. It Was thus found that for a uniform cylinder the accuracy of "zero" 
stresses was "10 -4 kg/mm 2, the displacements agreeing with the case of free compression. 
The characteristic value for the accuracy of the obtained stresses was measured by the quan- 

tity 

(~ = (1% -- (~_hl)tl%l, 

where ~h and ou h are the solutions of the difference problem obtained with the steps h,, h2, 
h4 and 2h,, 2h2. 2h~, respectively. 

w In the case of H* << H, H* << R the problem can be simplified. Namely, by ignor- 
ing the flexural rigidity of layer 2, setting Ozz(p, 0) = 0 in (5), and by replacing in (6) 
for that layer the effect of tangential loads by the volume forces q(p), 

%~(p, 0) ---- H * q ( p ) ,  ( 9 )  

one obtains for u*(p) 
-- v2 {,~. :.,*dp.,_ (p) + P du*<o (P) u* (,o) = -- q (p) ~ p" ( i0)  

with the boundary conditions given by 

~"*d~, (P) "*p (p) p=o = O, du*dp (p) if- v* u*p(p) IP=R = 
= (~*- ~) AT (i +~.) 

(11) 
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(E is the Young modulus). For simplicity, it was assumed that the coefficient of heat 
sion for layer 2 is (a* --s) and for layer i it is zero, 

The solution of Eq. (i0) under the boundary conditions (ii) 

~-,,,~ C' ~_~,o {. ~ , , 
~* (p) = ,o ( w  - =) ~T + 2 7 ,  ,] ~ (~)) ~f, + ~ p ~ ~p) ~p + 

0 

If q(la) is expanded into a series 
oo 

q(p) = ~7 &J~(~p), 
k:! 

then (7) is replaced by 

u (p) = ~ ~ ,-7{ J~ (p~p) + p [a* - -  a] AT  
h = l  P'h 

is given by 

P 

t - ~ j' p~q (O) 
2E'9 ~ dp. 

0 

i - - v ,  ~ S k 

expan- 

The solution for layer I can be reduced [i0] to the finding of a biharmonic stress function 
r z) whose values on the body surface are given by the boundary conditions. Employing 
the approach of [ii] one seeks the solution r z) in the form 

�9 (p, z) = z (Ap ~ + Bz 2) + ~ [EhI o (khp) + Gk~,kp[ 1 (~,kp)] sin ~,kz + 
k = l  

[A k sh phz + Bk ch ~ z  + CMx~z sh pkz + Dh~tkzch~t~,z ] 1o (ff~P), 
k = d  

where B k are the roots of the equation Jt(Bk R) = 0; X k = kw/H. In this case the conditions 
for p =-0 are automatically satisfied. By using the boundary conditions (1)-(5) and (9) one 
finds 

- ~ s  = o , - ~ ( [ ( i - ~ ) A .  - ~  
k=l 

--oz (2 - -  v)  h ~  - -  - ~ ' J ~ = o  = O, 7 (1 - -  v) kcI) - -  ~ ~=H = )" 

a o , .  1 = O, ( t  -- ,v) A* -- ~ b = ~  = O. a-7 (2 -- v) A* -- Oz~ ]z: H 

(12) 

To determine the unknown coefficients S k one has additionally the condition 

E 1 iminat ing 
variable, 

L 

~,, 
;; X d.~(l~lO]. E, ~-- ~i,, 

( 1 3 )  

the coefficients A, B, Ak, Bk, and E k from (12), (13) and introducing another 

one obtains a set of 

Xh = ~,~HI 1 (~q,H) [2 (1 - -  v) + ek] Gk, 

Yh = P~BJo (,ul:B) sh u~H Ct~ cth --7-- -t  Dl:], 

( ,-- ) Zh : :  p~RJ o (gh/O sh ,utaH Ch th --2- + DI, , 

Th = pkt?H*d o (pt:B) S~, 

infinite systems of linear equations, 

iii 



where 

(M~,~,T~ + N~hY~)= X~ (p= 1, 3, 5,...), (M~,~,T~ - -  N ~ Z h )  = 
h = l  h = l  

= X p ( p = 2 , 4 , 5  . . . .  ), 

~Y~-- ~ L y n X  p =  Th, - -  7 ~ Z a - -  ~ QphX~,=  T~, 
p ' = i , 3 , S t . . ,  i a ~ 2 , 4 , ~  . . . .  

p = I  l o ~ t  

(14) 

2 12 (t - -  v) -{- cp| . 
MPh = - R  ~ [:c a q- 2 (i + '0/(X~R) 2] (Z~ + it2) ' 

2 

Ilk [[ . 
81a~ ; Q ~ = L ~ t h  ~ 2 ' L~,a . H 

; �9 

sh I_thll -- p ,~ 11. sh ~H.-[- Fx~II . i -- v 2,~ 

2E,H*}~I /  

cth ~ / /  ,tt l~ It  
2 . F ~ -  t)t~th ~ ~ ; 

2 4  (kdO . Zo (;'h n) 
~'h =-= 

P~ 2E 

In finding the set of equations (14) the Fourier--Bessel expansion was used for the functions 
p, Io(kkp ) and kkPl,(%kp) in addition to the Dini and Fourier series employed in [ii], The 
evaluation of the required coefficients, stress values, and displacements was carried out on 

an electronic computer, 

To provide an example the stresses and displacements were evaluated for a silicon sys- 
tem (layer i) and a silica system (layer 2) with the following values of the parameters: 
E = 1.7,10 ~ kg/mm2; E, = 0.6"i0 a kg/mm2; ~ = 0.28; ~, = 0.17; (a* -- a)&T = 4.2,10 -3. 

In Fig. 2, o~ is shown in layer 1 against the quantity p/R for the systems with the 
following geometrical characteristics: H* = 4"10 -~ cm; H = 0.15 cm; R = 0.75 cm (Fig. 2a); 
H* = 4,10 -4 cm; H = 0.3 cm; R = 0.5 em (Fig. 2b). The values at the curves show the coordin- 
ate z, em, It can be observed that near the center of the disk the exact solutions agree 

3 

O,4 
L 

o o,,~ o,8 

Fig. 

b 

0 

2 

112 



4; 

0 
DO 

-8 
0 

a b 

o,4 o,e -o,o  o o,o  
p/O z, cm 

Fig. 3 

sufficiently well with the computations carried out by using the !'bimetallic I' model (dashed 
curves). At the same time~ near the edges of the disk the exact solution gives o o. against 
p especially in the case of (H + H*)/R - i (see Fig. 2b), The highest concentratlgn of 
stresses can then be Qbserved near the edges of the disk in the plane z ~ 0, 

In Fig. 3 for a system with H* = 5-10 -= cm, H = 0.15 cm, andR = 0.5 cm, Tpz is shown 

versus p (Fig. 3a) and versus z (Fig. 3b) in layers 1 and 2 (the maximum value is ~ ~ 0.03). 
It can be seen that the tangential stresses increase in their absolute value as the edge of 
the disk is approached, the strongest growth being observed in the plane z = 0, as in the 
previous case. 

Thus, in contrast to the beam approximation the solution in its exact form gives the 
magnitude of the internal stresses versus the coordinate p and enables one to compute the 
tangential stresses on the planes z = const. 

In view of the latter the obtained solution makes it possible to predict the changes 
in the physical properties by the disk radius and also to estimate the demands as regards 
the adhesive properties of the materials in real two-layer systems. 
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